3,608 research outputs found

    Vertex operator for the non-autonomous ultradiscrete KP equation

    Full text link
    We propose an ultradiscrete analogue of the vertex operator in the case of the ultradiscrete KP equation--several other ultradiscrete equations--which maps N-soliton solutions to N+1-soliton ones.Comment: 9 page

    Influence of lamination orientation and stacking on magnetic characteristics of grain-oriented silicon steel laminations

    Get PDF
    Analytical and experimental investigations have been carried out upon the behaviour of flux in laminations, where the rolling directions of adjacent sheets are reversed. The paper clarifies the mechanism of the greatly different magnetic characteristics between such laminations and usual ones, where the rolling directions of adjacent sheets are coincident.</p

    Global dynamics of a viral infection model with a latent period and Beddington-DeAngelis response

    Get PDF
    In this paper, we study the global dynamics of a viral infection model with a latent period. The model has a nonlinear function which denotes the incidence rate of the virus infection in vivo. The basic reproduction number of the virus is identified and it is shown that the uninfected equilibrium is globally asymptotically stable if the basic reproduction number is equal to or less than unity. Moreover, the virus and infected cells eventually persist and there exists a unique infected equilibrium which is globally asymptotically stable if the basic reproduction number is greater than unity. The basic reproduction number determines the equilibrium that is globally asymptotically stable, even if there is a time delay in the infection

    On the global stability of a delayed epidemic model with transport-related infection

    Get PDF
    We study the global dynamics of a time delayed epidemic model proposed by Liu et al. (2008) [J. Liu, J. Wu, Y. Zhou, Modeling disease spread via transport-related infection by a delay differential equation, Rocky Mountain J. Math. 38 (5) (2008) 15251540] describing disease transmission dynamics among two regions due to transport-related infection. We prove that if an endemic equilibrium exists then it is globally asymptotically stable for any length of time delay by constructing a Lyapunov functional. This suggests that the endemic steady state for both regions is globally asymptotically stable regardless of the length of the travel time when the disease is transferred between two regions by human transport

    Global asymptotic stability beyond 3/2 type stability for a logistic equation with piecewise constant arguments

    Get PDF
    In this paper, a logistic equation with multiple piecewise constant arguments is investigated in detail. We generalize the approach in two papers, [K. Uesugi, Y. Muroya, E. Ishiwata, On the global attractivity for a logistic equation with piecewise constant arguments, J. Math. Anal. Appl. 294 (2) (2004) 560580] and [Y. Muroya, E. Ishiwata, N. Guglielmi, Global stability for nonlinear difference equations with variable coefficients, J. Math. Anal. Appl. 334 (1) (2007) 232247], and establish a new condition for the global stability of the equation. Their results are given as one of the special cases. Moreover, we improve the 3/2 type stability condition under several dominance assumptions on the coefficients of the equation. Some examples and numerical simulations are also presented. All of these examples show that there are several conditions for the global stability of the equation, depending on the coefficients on the delay terms of the equation, beyond the 3/2 type stability condition

    Solutions to the ultradiscrete Toda molecule equation expressed as minimum weight flows of planar graphs

    Full text link
    We define a function by means of the minimum weight flow on a planar graph and prove that this function solves the ultradiscrete Toda molecule equation, its B\"acklund transformation and the two dimensional Toda molecule equation. The method we employ in the proof can be considered as fundamental to the integrability of ultradiscrete soliton equations.Comment: 14 pages, 10 figures Added citations in v

    Global stability of sirs epidemic models with a class of nonlinear incidence rates and distributed delays

    Get PDF
    In this article, we establish the global asymptotic stability of a disease-free equilibrium and an endemic equilibrium of an SIRS epidemic model with a class of nonlinear incidence rates and distributed delays. By using strict monotonicity of the incidence function and constructing a Lyapunov functional, we obtain sufficient conditions under which the endemic equilibrium is globally asymptotically stable. When the nonlinear incidence rate is a saturated incidence rate, our result provides a new global stability condition for a small rate of immunity loss

    Two types of condition for the global stability of delayed sis epidemic models with nonlinear birth rate and disease induced death rate

    Get PDF
    We study global asymptotic stability for an SIS epidemic model with maturation delay proposed by K. Cooke, P. van den Driessche and X. Zou, Interaction of maturation delay and nonlinear birth in population and epidemic models, J. Math. Biol. 39(4) (1999) 332352. It is assumed that the population has a nonlinear birth term and disease causes death of infective individuals. By using a monotone iterative method, we establish sufficient conditions for the global stability of an endemic equilibrium when it exists dependently on the monotone property of the birth rate function. Based on the analysis, we further study the model with two specific birth rate functions B 1(N) = be -aN and B 3(N) = A/N + c, where N denotes the total population. For each model, we obtain the disease induced death rate which guarantees the global stability of the endemic equilibrium and this gives a positive answer for an open problem by X. Q. Zhao and X. Zou, Threshold dynamics in a delayed SIS epidemic model, J. Math. Anal. Appl. 257(2) (2001) 282291
    • …
    corecore